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We approach the problem of solving symbolically systems of
algebraic equations.

The theory behind the methods that will be exposed is purely
algebraic, relaying essentially in Commutative Algebra and in
particular in the theory of ideals.

The goal of this presentation is to explain how to use the meth-
ods developed with the mentioned theory through Maple.

The methods presented are valid over polynomial rings over any
field. We restrict our presentation to the field of complex num-
bers.
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Statement of the problem:

Given a finite set of polynomials

p1(x1, . . . , xr), . . . , pn(x1, . . . , xr) ∈ C[x1, . . . , xr].

Decide if the system of algebraic equations

p1(x1, . . . , xr) = 0
...

pn(x1, . . . , xr) = 0


has a solution in C

In the affirmative case compute the solutions.
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In the context of Galois Theory:

Abel’s Theorem. For n ≥ 5 the general algebraic equation of
degree n

anx
n + an−1x

n−1 + · · · + a0 = 0

is not solvable in radicals.

Thus a purely symbolic procedure cannot be designed to solve
the problem algorithmically.

The main idea is:

To reduce the problem symbolically to the numeric computation
of roots of polynomials in one variable.
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Algebraic resultant of two polynomials

Let D be a unique factorization domain and p1(x), p2(x) ∈ D[x] two nonzero
polynomials with coefficients in D.

Problem: Find necessary and sufficient conditions for p1(x) and p2(x) to have
a common factor.

The first approximation is the next result.

The next statements are equivalent:

1. p1(x) and p2(x) to have a common nonconstant factor.

2. There exist nonzero polynomials q1(x), q2(x) ∈ D[x] with deg(q1(x)) <
deg(p1(x)) and deg(q2(x)) < deg(p2(x)) such that

q2(x)p1(x) + q1(x)p2(x) = 0.
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Let us suppose that the degree of p1(x) is n and the degree of p2(x) is m, that
is

p1(x) = anx
n + an−1x

n−1 + · · ·+ a0, an 6= 0,

p2(x) = bmx
m + bm−1x

m−1 + · · ·+ b0, bm 6= 0.

The Sylvester matrix of p1 and p2 with respect to x is defined as:

Syl(p1, p2, x) =



an an−1 · · · a0
an an−1 · · · a0

. . . . . . . . . . . .
an an−1 · · · a0

bm bm−1 · · · b0
bm bm−1 · · · b0

. . . . . . . . . . . .
bm bm−1 · · · b0



m

n

Example in Maple with n = 3 and m = 2. See Maple session resultants.mw
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The next statement are equivalent:

1. p1(x) and p2(x) have a common nonconstant factor.

2. There exist nonzero polynomials q1(x), q2(x) ∈ D[x] with
deg(q1(x)) < deg(p1(x)) and deg(q2(x)) < deg(p2(x)) such that

q2(x)p1(x) + q1(x)p2(x) = 0.

3. det(Syl(p1, p2)) = 0.

We define the Sylvester resultant of p1 and p2 with respect to x as

Resx(p1, p2) = det(Syl(p1, p2, x)).
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Remarks. If p1 and/or p2 is a nonzero constant C1 or C2 then

1. Resx(C1, p2(x)) = Resx(p2(x), C1) = C
deg(p2)
1 ,

2. Res(C1, C2) = 1.

3. Res(p1, p2) ∈ D

4. Res(p1, p2) = (−1)deg(p1) deg(p2)Res(p2, p1)

5. The resultant can be expressed as the determinant of other
matrices as the matrices of Bezout, Dixon . . ..

Theorem. p1(x) and p2(x) have a common nonconstant factor if and
only if Resx(p1, p2) = 0.
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We focus now in polynomials in C[x, y], that is D[y] with D = C[x].
Theorem. Let p1(x, y), p2(x, y) ∈ D[y] and

R(x) = Resy(p1, p2) ∈ D.

Let us suppose that

p1(x, y) =
m∑
i=0

ai(x)y
i and p2(x, y) =

n∑
i=0

bi(x)y
i.

The following statements hold:

1. If (a, b) ∈ C2 is a common zero of p1 and p2 =⇒ R(a) = 0.

2. If a ∈ C verifies R(a) = 0 and am(a) 6= 0 or bn(a) 6= 0 then
there exists b ∈ C such that (a, b) is solution of {p1(x, y) =

0, p2(x, y) = 0}.
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From the previous theorem an algorithm is derived to solve sys-
tems of algebraic equations, of two polynomials in two variables.

The base ground of this method is Linear Algebra.

Algorithm.

Given two polynomials p1(x, y), p2(x, y) ∈ C[x, y]

Decide if the system of algebraic equations

p1(x, y) = 0

p2(x, y) = 0

}
has a solution over C and in the affirmative case determine
all its solutions.
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1. Perform a linear change of coordinates so that at least one of the polynomials
p1, p2 has constant leading coefficient as a polynomial in the variable y.

2. R(x) = Resy(p1(x, y), p2(x, y))

3. If R(x) is zero, then p1(x, y) and p2(x, y) have an infinite number of solutions
in common, namely they are the zeros of the polynomial gcd(p1, p2) ( one
has to perform the inverse change of coordinates of the mentioned change
in (1)).

4. If R(x) is a nonzero constant then the system has no solution.

5. If R(x) is a nonconstant polynomial the system has a finite number of solu-
tions that can be computed as follows:

• Given a root a of R(x) compute the polynomial

Ma(y) = gcd(p1(a, y), p2(a, y)).

• The set of solutions is {(a, b) /R(a) = 0, Ma(b) = 0}
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With Maple. The next Maple commands will be needed:

resultant(p1, p2, y)

to compute Resy(p1(x, y), p2(x, y)) and

gcd(subs(x = a, p1), subs(x = a, p2))

to compute gcd(p1(a, y), p2(a, y))

Examples with Maple. See Maple session resultants.mw
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Application to Plane Curves

The resultant plays an important role in the symbolic theory and manipulation
of algebraic curves.

We show next how to obtain the implicit equation of a curve C given its para-
metrically by rational functions.

Theorem. Let C be the curve generated by P(t) =
(
p1(t)
q1(t)

, p2(t)q2(t)

)
∈ C(t)2 and

defined implicitly by a polynomial f(x, y). Let

R(x, y) = Rest(q1(t)x− p1(t), q2(t)y − p2(t)).

Then it holds
f(x, y) =

R(x, y)

gcd(R(x, y), ∂R(x,y)
∂x )

.

Example with Maple. See Maple session resultants.mw


