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The symbolic resolution of systems of algebraic equations is a grate success
of Symbolic Computation.

The symbolic resolution of systems of algebraic equations is based on the
theory of Grobner Basis.

The concept of Grobner Basis and the algorithm for its computation was
introduced by B. Buchberger in his PhD Thesis (1965).

Buchberger B., Ein Algoritmus zum Baseselemente de Restk-
lassenringen nach einen nulldimensionen Polynomideal, Ph. D.
Thesis Math. Inst., Univ. of Innsbruk, Austria (1965) y Aequa-
tiones Math. n. 4, 3, pp 374-383 (1970)

Grobner basis have numerous applications in Mathematics, some examples
of areas of application are: Logics, Automated Theorem Proving, Algebraic
Geometry, Commutative Algebra, Elimination Theory.

We focus on their application to problem of solving algebraic equations.
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We can consider Grobner basis as a generalization of gaussian elimination
to the case of nonlinear algebraic equations.

Let p1,...,p, be polynomials in Clzy,...,z,]. Given a system of algebraic
equations

pi(z1,...2) =0
: with p; not necessarily linear.

pn(T1,...,2,) =0
the essential idea is to obtain an equivalent triangular system of equations,

that is a triangular system of equations with the same set of solutions. In this
sense the notion of ideal generated by a set of polynomials is important.

The ideal generated by the polynomials py, .. ., p, inthe ring R = Clzy, . .., =]
is the following subset of R

n
(P1y- -y pn) = {Zripi where a4, ..., a, € R}.

1=1

The set {p1,...,p,} is called a basis of the ideal.
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Given polynomials q1,...,q, € Rif (q1,--.,¢n) = (p1,-..,pn) then the sys-
tems
pi(zy,...,z.) =0 a(z1,...,2,) =0
: and :
pn(xla---vxr)zo qm(aq,...,xr):()

have the same solution set.

Thus the idea is to find a basis {G1,...,G,} of the ideal (py,...,p,) with a
triangular structure.

The intrinsic difficulty of the problem is that R = C|z4,...,x,] is not an eu-
clidean domain and thus there is no division operation defined in R.

To overcome this difficulty an admissible ordering will be defined in the set
of monomials in the variables z1, .. ., z,. and by successive polynomial reduc-
tions a basis {G1,...,G,} of theideal (py, ..., p,) is obtained with the desired
properties. The desired basis is the Grobner basis.
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Given the system

pi(r,y,2) =y* —2° —1=0
poz,y,2) =2+ 22 —4=0
p3(z,y,2) = 2% — 20 — 2+ 22 + 22y — 2P —w2? =0

using Grobner basis the following equivalent triangular system
is obtained

Go(w,y,2) =y’ —a°—1=0

Gi(z,y,2) =2 +2>—4=0
Gs(z,y,2) = (z — 1)(2* = 2) = 0.

We obtain 12 solutions of the system.
(17 \/57 \/g)a (17 \/57 _\/57 (17 _\/57 \/57 (17 _\/57 _\/3)

(V2,V2,V3), (V2,V2,=V3),(V2,-v2,V3), (V2,—V2,-V3)
(—V2,V2,v/3), (—V2,v2,=V3), (—V2,-V2,V3), (=V2,-V2, —V/3)
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Monomial orderings

We introduce the most commonly used monomial ordering in the computa-
tion of Grobner basis.

Let M be the set of all monomials in the variables =1, ..., z,

. (6751 (6]
M= {a" - -ar

ai, ..., € N}

= The pure lexicographical ordering <pjex With z; > 29 > ... > z, is defined

by
s=aft 2l <pex t =27y
if oy < A; or there exists [ € N such that o, = )\, for1 < k < [ and

a; < A

m The graded lexicographical ordering <guex With 21 > 29 > ... > x, iS

defined by
s = xfl'”mgr <grlext: xi\l :Uv)”\T

Example with Maple. See Maple session groebner.mw
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To solve the system of algebraic equations

pl(:zrl,. . .,.I'r) =0
: with p; not necessarily linear.
pn(T1,. .., 2,) =0

we work with Grobner basis as a black box as follows:

1. Compute the reduced Grobner basis of the polynomials {p1,...,p.}
with respect to the pure lexicographic ordering with 1 > 2o > ... >
Ty

2. If the Grobner basis is {1}, the system does not have a solution.

3. If for each x;, i = 1,...,r there exists a polynomial in the Grobner
basis whose leading monomial with respect to the order chosen in
(1) is of the form z}" then the system has finitely many solutions.
Otherwise the system has an infinite number of solutions.

4. Solve the triangular system given by the Grobner basis.
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Maple session

There is a Maple library on Grobner basis.

Groebner.

The Maple statement to compute the reduced Groebner basis of
p1, - - -, pn] With respect to the pure lexicographical ordering with
x> > x, I8!

Basis([pi, . . ., pa, plex(zy, . .., x,))
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Example

Given 3 polynomials
> pl:i=y " 2+z72+x"2-4;
pl =y*+ 22+ 2% —4
> p2:=x*xy—-1;
p2 =xy—1
> p3:=x"2-y " 2+z"2-1;
p3 =2 —y?+ 22— 1



ATHENS 2010, S.L. Rueda & J. Sendra

We visualize the problem geometrically.
> dmplicitplot3d ({pl,p2,p3},x=-4..4,y=-3..3,z=-4..4);




ATHENS 2010, S.L. Rueda & J. Sendra

> dimplicitplot3d({pl,p2,p3},x=-1..4,y=-1..4,z=-1..4);




ATHENS 2010, S.L. Rueda & J. Sendra

We charge the library Groebner.

> with (Groebner) :

We compute the Grdbner basis of py, ps, p3 with respect to the pure lexico-
graphic ordering with x > y > 2.

> GB:=Basis ([pl,p2,p3],plex(x,v,2));
GB:=1[62>—11,2y*> -3, -2y + 3 1]

We obtain a new system with triangular form, the polynomials of the new
system are:

> gl:=GB[1];92:=GB[2];g3:=GB[3];
ql :==62>—11
q2 =2y*—3
q3 = —2y+3zx
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We solve the triangular system:
= The variable = takes values +./(3).
= The variable y takes the values £/(2).
= For each value of y the variable z takes values £2,/(2).

Therefore the solutions are:

> SOL1:=[2/3*xsqrt(3/2),sqgrt(3/2),sqgrt (11/6)1];

1 1 1
> SOL2:=[-2/3xsqrt (3/2),-sqgrt(3/2),sqgrt (11/6)];

1 1 1
> SOL3:=[2/3%sqrt(3/2),sqgrt (3/2),-sqrt(11/6)1;
1 1 1
> SOL4:=[-2/3xsqrt (3/2),-sqgrt(3/2),-sqgrt (11/6)1];

SOL == [~ V6, —5 V6, —< V0]
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We check the correctness of the answer.

> for 1 from 1 to 4 do
> simplify(subs(x=SOL.i[1],y=SOL.1[2],2z=SOL.i[3], [pl,p2,p31))
>  odj;
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Implicitization of parametric equations

Grdobner basis allow the elimination of variables in a system of algebraic
equations.

An application of this fact is the implicitization of rational representations.

Let us suppose that we are given a parametric representation of an algebraic
object. We are given the parametric equations:

where p;, ¢; are polynomials in the variables ¢4, . . ., ¢,.

In this situation the goal is to find the implicit equations of the geometric
object (that is, the algebraic variety) defined by the previous parametrization.
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For this purpose the following method can be applied:

1. Consider the polynomials Q;(z;,t1,...,t,) = qx; —pi, i =1,...,n.

2. Compute a Grdobner basis of the polynomials

{Q1, .. .,Qn,Wchm(ql, coyqn) — 1}
i=1

where W is a new variable, with respect to the pure lexicographical
order with {t; < ... < t, < W < 1 < ... < z,}. This means
that ¢; are the weakest variables. Observe that the polynomial @) =
Wl lem(q,...,q,) — 1 guaranties that the denominators do not
vanish.

3. Those polynomials in the Grobner basis depending only on the vari-
ables {x1,...,x,} are the implicit equations we are looking for.
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Maple session

1. with(Groebner);
Define p;, ¢;, i = 1.
for i from 1 to n do Q||i := q||i * ||i — p||i od;

2.

3.

4. Q =W xlem(q||1,...,q|ln) — 1;

5. GB := Basis([Q1,...,Q,, Q],plex(ty, ... . t,, W,x1,...,2,));
6.

Those polynomials in the Grobner basis depending only on the vari-
ables {x1,...,x,} are the implicit equations.
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> with (Groebner);

[fglm, gbasis, gsolve, hilbertdim, hilbertpoly, hilbertseries, inter_reduce, is_finite,
is_solvable, leadcoeff, leadmon, leadterm, normalf, pretend_gbasis, reduce, spoly,
termorder, testorder, univpoly]

Step-2

> PARAM:=[ (tl*t2)/(tl°2+t272+1), (t1°2+1)/(t1"2+t272+1),
> (t2+1)/(tl172+t272+1)1;

Step-3

> for 1 from 1 to 3 do Q| |i:=numer (x| |i1-PARAM[1]) od;
Q1 :=x1 t1% + 21 122 + 21 — t1 2
Q2 =22 t1% + 22122 + 22 — t1% — 1
Q3 :=x3t12+2312° + 23 —t2 — 1
Step-4

> Q:=lcm(denom (PARAM[1]),denom (PARAM[2]),denom (PARAM[3])) «W-1;
Q= (t1>+t2° +1)W -1
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Step-5
> GB:=Basis ([Q1l,02,03,0],plex(tl,t2,W,x1,x2,x3));

GB = [23? 12 — 218% 22 + 321% 2% — 422 21 + 11" + 23% + 2221 — 5223 — 223 223
+ 422223 — 223 22 x1? + 4222 — 22312 + 221?23 + 21? — 22,

— 22?2+ 22 — 21?4+ 22 W — W, 21°W + 222 21% — 221% 28 — 212 + 2223 — 2222 23

— 3222+ 13222 + 22322 + 22 — 13%, W2 — 223 W + 212 4+ 222 — 22 + 252,

22 — 14+ 2312 — 13 +W, —1322 + 33 + 21212 + 21 + t2 22% — t2 22 + 22% — 22,

— 23+ Wit2+W, 22t1 —t1 + 2112, 21 t1 —t222 — W+ 23, Wtl — 23 t1 + 1,

18 t1% — t2 22 — 12 + 15]
Step-6

> IMPLICIT:=GB[1l];

IMPLICIT = 23% 222 — 223% 22 + 3212222 — 422 21% + 21* + 282 + 222 — 5 123
— 22323+ 422228 — 22322 21> +422° — 21322 +2x1° 28 + x1? — 12
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CHECKING THE ANSWER

> simplify (subs (x1=PARAM[1],x2=PARAM[2],x3=PARAM[3],
> IMPLICIT));

0



