Helicópteros (162)
3º AV, Aeronaves

Año académico 2005-06

Preparado por: Miguel A. Barcau Montejano
Ángel A. Rodríguez Sevillano

TRABAJO

CÁLCULO
ACTUACIONES
HELCÓPTERO
SUMARIO

- Datos de partida.
- Potencia Ideal & Velocidad Ascendente (W_i, h_j).
- Potencia & Velocidad Ascendente (W_i, h_j).
- Potencia & Velocidad Descendente (W_i, h_j).
- Potencia & Velocidad Avance (W_i, h_j).
- Curvas de Potencia (W_i, h_j).

DATOS DE PARTIDA

- Helicóptero. `162.3AV.trabajos_05-06.xls`
- Datos necesarios:
 - Diámetro del rotor:
 - Longitud total:
 - Peso vacío:
 - Peso máximo:
 - Planta motriz:
 - Potencia máxima:
 - Velocidad de crucero:
 - Cuerda:
 - Número de palas:
 - Velocidad angular:
 - Estrechamiento:
 - Perfil utilizado: $a, \delta_0, \delta_1, \delta_2$
Potencia Ideal & Velocidad Ascendente

- Potencia ideal adimensionalizada con la Potencia ideal a vuelo a punto fijo en función de la velocidad de vuelo vertical ascendente adimensionalizada con la velocidad inducida a vuelo a punto fijo.

\[
\frac{P_T}{P_{10}} = \frac{V_p + v_i}{V_{10}} = \frac{1}{2} \left[\sqrt{\left(\frac{V_p}{V_{10}} \right)^2 + 4 + \frac{V_i}{V_{10}}} \right]
\]

\[
\frac{v_i}{V_{10}} = \frac{1}{2} \left[\sqrt{\left(\frac{V_p}{V_{10}} \right)^2 + 4 - \frac{V_i}{V_{10}}} \right]
\]

Potencia Ideal & Velocidad Ascendente

- Potencia ideal en función de la velocidad vuelo vertical ascendente para un peso fijo y distintas alturas.

- Potencia ideal en función de la velocidad vuelo vertical ascendente para una altura fija (S.L.) y distintos pesos.
Potencia & Velocidad Ascendente \((W_i, h_j)\).

- Comprobar que se dispone de las características del helicóptero para la aplicación de la teoría del elemento de pala.
- Rotor de torsión equivalente:
 \[
 \theta = \theta \frac{1}{x} \quad \text{y} \quad \sigma = 3 \int_0^1 \alpha^2 \, dx
 \]
- Gráfico de la potencia en función de la velocidad vuelo vertical ascendente para un peso fijo y distintas alturas.
- Gráfico de la potencia en función de la velocidad vuelo vertical ascendente para una altura fija (S.L.) y distintos pesos.

Potencia & Velocidad Ascendente \((W_i, h_j)\).

- Expresiones:
 \[
 C_T = B^2 \frac{\alpha \sigma}{4}
 \]
 \[
 C_{Q_l} = \phi C_T
 \]
 \[
 C_{Q_v} = \frac{\sigma}{8} \left(\delta + \frac{4}{3} \delta_\alpha + 2 \delta_\alpha^2 \right)
 \]
 \[
 \phi = \frac{1}{2} \sqrt{\frac{2C_T}{B^2} + \left(\frac{V_v}{\Omega R} \right)^2 + \frac{V_l}{\Omega R}}
 \]
 \[
 P = \rho (\Omega R)^3 \left(\pi R^2 \right) \left(1 + F \right) \left(C_{Q_l} + C_{Q_v} \right)
 \]
Potencia & Velocidad Descendente (W_i, h_j)

- Desarrollar el cálculo solamente para valores comprendidos entre:

$$-1,7 < \frac{V'}{V'_{in}} < 0 \quad y \quad 0 < \frac{P_i}{P_{in}} < 1,1$$

- Potencia inducida adimensionalizada con la Potencia ideal a vuelo a punto fijo en función de la velocidad de vuelo vertical ascendente adimensionalizada con la velocidad inducida a vuelo a punto fijo.

$$\bar{V}_r = 0,812 + 0,072 \bar{U}_p - 1,75 \bar{U}_p^2 \quad 0 < \bar{U}_p < 0,8$$

$$\bar{V}_r = 3,726 - 0,693 \bar{U}_p - \frac{3,26}{\bar{U}_p} \quad 0,8 < \bar{U}_p < 1,1$$

Potencia & Velocidad Descendente (W_i, h_j)

- Potencia en función de la velocidad vuelo vertical ascendente para un peso fijo y distintas alturas.

- Potencia en función de la velocidad vuelo vertical ascendente para una altura fija (S.L.) y distintos pesos.

$$C_{Q0} = \frac{\sigma}{8} \left(\delta_{\epsilon} + \frac{4}{3} \delta_{\alpha_i} + 2 \delta_{\alpha_i^2} \right)$$

$$P = (1 + F) \left[P_i + \rho(\Omega R)^3 (\pi R^2) C_{Q0} \right]$$
Potencia & Velocidad Descendente (W_j, h_j)

- Potencia en función de la altura al suelo con efecto suelo y comparar con la potencia sin efecto suelo para un peso y a nivel del mar.

\[P_{ige} = \Lambda P_{oge} + (1 - \Lambda) \rho(\Omega R)^3 (\pi R^2) \frac{\sigma_e}{8} \delta_o \]

- Factor de Mérito (vuelo a punto fijo).

\[M = \frac{1}{1 + \frac{P_j}{P_o}} \]

Potencia & Velocidad Avance

- Desarrollar el cálculo de la potencia necesaria del rotor en vuelo de avance, variando:
 - Peso que soporta el rotor,
 - altura de vuelo y,
 - ángulo de ásiento del rotor.

- Representar gráficamente los resultados anteriores en gráficos P=(Pi +Po) & Vavance con cada una de las variables citadas anteriormente manteniendo las otras dos constantes.
Potencia & Velocidad Avance

- Para un peso determinado, un ángulo de asiento elegido y a nivel del mar, calcular y representar cómo varía el paso colectivo y el batimiento con la velocidad de avance,
 - Aplicar el NACA-TR-716 junto en la documentación.
 - Entorno de variación de datos
 - 1,1 Woperativo < W < 0,9 WMTO
 - 0 < V < 1,2 VMax (Información del helicóptero elegido)
 - 0 < α < 20 (Δα ≤3°). Potencia & Velocidad Descendente (W, h)

Curvas de Potencia

- Desarrollar el cálculo de la potencia necesaria del helicóptero en vuelo uniforme, estacionario y a nivel, variando:
 - Peso del helicóptero y altura de vuelo para un ángulo de asiento del rotor de 5°.
- Representar gráficamente los resultados anteriores en gráficos Pn = (Pi + Po) + PF & Vhorizontal para distintos pesos y alturas.
- Representar en el mismo gráfico anterior la potencia disponible suministrada al rotor con un factor η=0,80 (Incluye rendimiento del sistema de transmisión y potencia consumida por otros sistemas).
- Calcular Autonomía y Alcance máximo, indicando la velocidad de vuelo y potencia necesaria correspondiente.
Curvas de Potencia

- Cálculo del techo con y sin efecto suelo [(IGE) y (IGE)] del helicóptero en vuelo a punto fijo para los distintos pesos que se han estudiado en este trabajo.
- Modelizar las curvas de potencia de la turbina.

Bibliografía