Radiation Pressure

Modeling the Space Environment

Manuel Ruiz Delgado

European Masters in Aeronautics and Space
E.T.S.I. Aeronáuticos
Universidad Politécnica de Madrid
April 2008
Radiation Pressure Propels Solar Sails
Radiation Pressure

Electromagnetic radiation produces a force over the satellite

<table>
<thead>
<tr>
<th>Sun</th>
<th>Earth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar radiation:</td>
<td>Albedo: reflection and scattering of incident solar radiation</td>
</tr>
<tr>
<td>electromagnetic radiation from X-ray to radiofrequency</td>
<td>(\sim 10 - 35% R_s)</td>
</tr>
<tr>
<td>Solar wind:</td>
<td>Earth’s IR re-emission</td>
</tr>
<tr>
<td>charged particles (mainly protons) and electrons</td>
<td></td>
</tr>
</tbody>
</table>
Radiation Pressure Cause

- Electromagnetic radiation carries:
 - Energy
 - Linear Momentum

- Each photon has:
 - Speed
 - Energy
 - Linear momentum

- Solar flux Φ:
 - Energy flux per unit normal area at 1 AU from the Sun

\[
\Phi = \frac{\Delta E}{A \Delta t} \approx 1367 \text{ W/m}^2
\]

Light speed: $c = 2,9979250 \cdot 10^8 \text{ m/s}$
Photon’s frequency: ν

Plank’s constant: $\hbar = 6.626068 \cdot 10^{-34} \text{ m}^2\text{kg/s}$
Impact Types

Specular reflection: \[\mathbf{p}_2 = \mathbf{p}_1 + 2\mathbf{p}_1 \cos \theta \mathbf{n} \]
Reflectivity: \[\epsilon = 1 \]
Rad. Pressure Coefficient: \[C_R = 1 + \epsilon = 2 \]

Diffuse reflection: \[\overline{\mathbf{p}}_2 = \frac{\mathbf{p}_1}{2} \mathbf{n} \]
Reflectivity: \[\epsilon = 0 - 1 \]
Rad. Pressure Coefficient: \[C_R = 1 - 2 \]

Absorption: \[\mathbf{p}_2 = 0 \]
Reflectivity: \[\epsilon = 0 \]
Rad. Pressure Coefficient: \[C_R = 1 \]

Transparency: \[\mathbf{p}_2 = \mathbf{p}_1 \]
Reflectivity: \[\epsilon = -1 \]
Rad. Pressure Coefficient: \[C_R = 0 \]
Theoretical Computation of Radiation Pressure

- Force over an element of surface:

\[d\mathbf{F}_{inc} = (p_1 - p_2) N \cdot ds = \frac{(p_1 - p_2)}{p_1} \max\left(-\Phi \cdot ds, 0\right) \]

\[N \quad \text{Number or particles per unit time and unit normal area} \]

\[\Phi \quad \text{Solar energy flux} \]

\[\Phi/c \quad \text{Linear momentum flux:} \quad \frac{\Phi}{c} \simeq 4.56 \cdot 10^{-6} \text{ N/m}^2 \]

- Integrate over all the surface exposed to radiation
- Include radiation reflected by other parts of the satellite
- Thermal emission: \[d\mathbf{F}_{emi} = -a\sigma T^4 ds/c \]
 \[(\sigma = 5.661 \cdot 10^{-8} \text{ WK}^4/\text{m}^2, \text{Boltzmann constant}) \]

- Radioelectric emission: \[F_{emi} \simeq \dot{W}/c \]
Simple Model of Radiation Pressure

- For simple numerical simulation: global coefficient C_R:

$$ F_{rad} = \nu P_{rad} C_R A_{\odot} $$

- Assume force along flux vector $-r_{\odot}$
- RP Coeff $C_R \simeq 1 - 2$ (Differential determination)
- Radiation pressure: $P_{rad} = \frac{\Phi}{c} = \frac{\Phi}{c} \frac{-r_{\odot}}{r_{\odot}}$

$$ (P_{rad} = 4.56 \cdot 10^{-6} \text{ N/m}^2) $$

- Area exposed to sun A_{\odot} (\neq ram area for drag)
- Area exposed changes with attitude/Solar panels do not
- Shadow function ν: Earth shadow cone blocks the Sun
- Radiation pressure torque \rightarrow rotation/attitude control
Detailed Model of Radiation Pressure

- Account for the reflection/absorption and surface orientation of each section of the satellite

\[\mathbf{F}_i = -\nu P_{rad} \cos \theta_i A_i \left[(1 - \epsilon_i) \mathbf{e}_\odot + 2\epsilon_i \cos \theta_i \mathbf{n}_i \right] \]

- Shadow function \(\nu \) with light/umbra/penumbra
- Must know satellite attitude, shape \(\mathbf{n}_i, \cos \theta_i \) and surfaces \(\epsilon_i \)
- Reflections from other parts of the satellite
- Requires a detailed model of the satellite (FEA)

<table>
<thead>
<tr>
<th>Material</th>
<th>(\epsilon)</th>
<th>(1 - \epsilon)</th>
<th>(C_R \simeq 1 + \epsilon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar panel</td>
<td>0.21</td>
<td>0.79</td>
<td>1.21</td>
</tr>
<tr>
<td>H-G antenna</td>
<td>0.30</td>
<td>0.70</td>
<td>1.30</td>
</tr>
<tr>
<td>Al-Mylar solar sail</td>
<td>0.88</td>
<td>0.12</td>
<td>1.88</td>
</tr>
</tbody>
</table>
Shadow Function: Cylindrical

Simplified shadow function: cylindrical shadow cone:

\[\nu = \begin{cases}
1 & \text{Lighted} \\
0 & \text{Inside shadow cylinder}
\end{cases} \]

Cf. Vallado
Shadow Function: Umbra/Penumbra

Regions of the shadow cone: lighted, umbra, penumbra

\[\nu = \begin{cases}
1 & \text{Lighted} \\
\in [0, 1] & \text{Penumbra, outer umbra (217 ER, too far!)} \\
0 & \text{Umbra}
\end{cases} \]

Penumbra: compute visible fraction of Sun surface

Cf. Montenbruck
Solar Flux

- **Constant model:**
 - Mean solar flux at 1 AU (ESA):
 - Max solar flux (summer solstice):
 - Min solar flux (winter solstice):

- **Annual variation model:**

 \[
 \Phi = \frac{1358}{1.004 + 0.0334 \cos D_{aph}} \quad \text{W/m}^2
 \]

 \(D_{aph}\): annual phase. Angle from Aphelium (approx. 4th July)
Time changes of Flux:
- Summer-Winter: 3.4%
- 11-year Sun cycle: 0.1%
- UV+ part very variable ($F_{10.7}$), but holds little energy

<table>
<thead>
<tr>
<th>Type</th>
<th>Wavelength (nm)</th>
<th>Average Φ (W/m2)</th>
<th>Worst-case Φ (W/m2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near UV</td>
<td>180-400</td>
<td>118</td>
<td>177</td>
</tr>
<tr>
<td>UV</td>
<td>< 180</td>
<td>$2.3 \cdot 10^{-2}$</td>
<td>$4.6 \cdot 10^{-2}$</td>
</tr>
<tr>
<td>UV</td>
<td>100-150</td>
<td>$7.5 \cdot 10^{-3}$</td>
<td>$1.5 \cdot 10^{-2}$</td>
</tr>
<tr>
<td>EUV</td>
<td>10-100</td>
<td>$2 \cdot 10^{-3}$</td>
<td>$4 \cdot 10^{-3}$</td>
</tr>
<tr>
<td>X-rays</td>
<td>1-10</td>
<td>$5 \cdot 10^{-5}$</td>
<td>$1 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>Flare X-rays</td>
<td>0.1-1</td>
<td>$1 \cdot 10^{-4}$</td>
<td>$1 \cdot 10^{-3}$</td>
</tr>
</tbody>
</table>
Solar radiation pressure: (pure absorption: $C_R = 1$)

$$P_{rad} = \frac{\Phi}{c} = 4.51 \cdot 10^{-6} \frac{\text{W s}}{\text{m}^3} \left(\frac{\text{N}}{\text{m}^2} \right)$$

Earth Radiation Pressure

- Earth albedo (only day side): $< 475 \text{ W/m}^2$, average: 0.3Φ
- IR emission (10-20% day/night): $< 260 \text{ W/m}^2$, average: 230
- Changes with Earth surface: Sea, ice, land... Must divide Earth in surface elements...
- Spherical Harmonics model for emissivity
- Only for very high precision: diminishes with height

Divide Earth in N surface elements i (about 20)

$$\vec{r}_{ERP} = \sum_{i=1}^{N} C_{R} \left(\nu_{i} a_{i} \cos \theta_{i}^{\oplus} + \frac{1}{4} \epsilon_{i} \right) P_{rad} \frac{A_{S}}{m} \cos \theta_{i}^{S} \frac{dA_{i}^{\oplus}}{\pi r_{i}^{2}} \, e_{i}$$

- ν_{i}: shadow function of surface i: \begin{align*}
\text{Albedo:} & \quad \text{See Sun and Sat} \\
\text{IR:} & \quad \text{See Satellite}
\end{align*}
- a_{i}: albedo/IR factor: average 0.34, changes over the Earth
- ϵ_{i}: emissivity of surface element, average 0.68-disk/sphere
- $\cos \theta_{i}^{\oplus}$: angle of Earth surface element i with Sun
- $\cos \theta_{i}^{S}$: angle of satellite surface with Earth element i
- e_{i}: unit vector from surface element to satellite at a distance r_{i}^{2}
- Compute separately for Albedo and IR
Albedo variability with latitude and season:

\[a = a_0 + a_1 P_1 (\sin \phi) + a_2 P_2 (\sin \phi) \]

\[a_1 = c_0 + c_1 \cos [\omega (JD - t_0)] + c_2 \sin [\omega (JD - t_0)] \]

where

- \(t_0 \) Epoch
- \(\omega \) Earth orbit pulsation, \(2\pi/365.25 \)
- \(\phi \) Equatorial geocentric latitude
- JD Julian Date
- \(P_n \) Legendre polynomial of degree \(n \)
- \(a_0 = 0.34 \), \(a_2 = 0.29 \)
- \(a_1 : c_0 = 0 \), \(c_1 = 0.1 \), \(c_2 = 0 \)

Longitude considered through Sun angle and shadow function.
Earth IR radiation variability with latitude and season:

\[e = e_0 + e_1 P_1 (\sin \phi) + e_2 P_2 (\sin \phi) \]

\[e_1 = k_0 + k_1 \cos [\omega (JD - t_o)] + k_2 \sin [\omega (JD - t_o)] \]

where

- \(t_o \) Epoch
- \(\omega \) Earth orbit pulsation, \(2\pi / 365.25 \)
- \(\phi \) Equatorial geocentric latitude
- \(JD \) Julian Date
- \(P_n \) Legendre polynomial of degree \(n \)
- \(e_0 = 0.68 \), \(e_2 = -0.18 \)
- \(e_1 : k_0 = 0 \), \(k_1 = -0.07 \), \(k_2 = 0 \)
Effects of Radiation Pressure

- Small, except for light satellites; important in GEO
- Periodic changes in all elements (yearly: e, orbital: a)
- Secular changes in Ω, ω
- Small change with solar activity
- Comparison with atmospheric drag:

$$\frac{a_{aerod}}{a_{rp}} = \frac{1}{2} \rho \frac{C_D A}{m} \frac{v_{rel}^2}{P_{rad} C_R A_\odot/m} \approx \frac{\rho v_{rel}^2}{P_{rad}^2} \Rightarrow \text{equal at } \approx 800\text{km}$$

A and A_\odot assumed to be similar.

- Application:
 - Propulsion: solar sails
 - Maneuver: flaps in solar panels
Visualization of Radiation Pressure Effects

[Diagram showing the visualization of radiation pressure effects with arrows indicating the direction of pressure.]
Visualization of Radiation Pressure Effects

$-\Delta \nu$
Visualization of Radiation Pressure Effects

\[-\Delta \nu\]
Visualization of Radiation Pressure Effects
Periodic variation of vector \mathbf{e} normal to the sun vector. After one year, it returns to original value.
VOP Effects of Perturbations

<table>
<thead>
<tr>
<th></th>
<th>Gravity</th>
<th>3rd Body</th>
<th>Atm Drag</th>
<th>Rad Press</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zonal</td>
<td>Sect/Tess</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>S</td>
</tr>
<tr>
<td>e</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>S</td>
</tr>
<tr>
<td>i</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>S</td>
</tr>
<tr>
<td>Ω</td>
<td>P</td>
<td>S</td>
<td>P</td>
<td>S</td>
</tr>
<tr>
<td>ω</td>
<td>P</td>
<td>S</td>
<td>P</td>
<td>S</td>
</tr>
<tr>
<td>M_0</td>
<td>P</td>
<td>S</td>
<td>P</td>
<td>S</td>
</tr>
</tbody>
</table>

P: Periodic
S: Secular
Also: coupling effects

Source: Vallado