Herramientas Personales
Usted está aquí: Inicio Ciencia de la Computación e Inteligencia Artificial Non-Linear Processing and Image Analysis. Mathematical Morphology

Non-Linear Processing and Image Analysis. Mathematical Morphology

El tratamiento no lineal tiene una especial utilidad en sistemas de tratamiento y análisis de imágenes porque puede considerar satisfactoriamente las formas de las estructuras presentes en las imágenes. Dentro del tratamiento no lineal, el curso se centrará especialmente en los operadores morfológicos, los cuales se establecen dentro de un marco formal sólido y elegante, la morfología matemática, que se basa en especial en la teoría de conjuntos y en la teoría de retículos.

Imagen de la asignatura

JOSÉ CRESPO DEL ARCO

 

Departamento de Lenguajes y Sistemas Informáticos e Ingeniería de Software.
Facultad de infromática.

Investigación en Tecnologías para el Desarrollo de Sistemas Software Complejos.
Graduate-1 semester.
Máster y Doctorado en Tecnologías para el Desarrollo de Sistemas Software Complejos
Máster y Doctorado en Software y Sistemas

Escribir un pie de foto

Valora esta asignatura

 

Créditos ECTS: 4.
Last review (Noviembre 2012).

 

REQUIREMENTS AND PRIOR KNOWLEDGE

Students should have basic knowledge about programming (in particular, the imperative language paradigm and/or the object paradigm).

 

GENERAL DESCRIPTION OF THE SUBJECT

This course treats some relevant techniques of image processing and analysis. Nowadays the availability of image-type information is growing, and appropriate techniques and methods for processing and analyzing the information that exists in this type of data are needed. The course places special emphasis on morphological processing and analysis, which is particularly useful in processing and analyzing the shapes of image structures. Set theory and lattice theory provide the mathematical foundations. Both the filtering step and the stage of segmentation and analysis of regions of interest, obtaining their characteristic parameters, are covered in this course.

This course addresses aspects of algorithmic implementations of some operators and techniques, studying their efficient implementations, such as the use of queuing algorithms. In terms of applications, the medical imaging domain will receive special attention..

 

OBJETIVES: KNOWLEDGE AND SKILLS

- Knowing the theoretical foundations of image processing and analysis, with special emphasis on treatment and morphological analysis.

- Knowing filtering techniques, understanding the qualitative differences between the various kinds of filters and operators.

- Studying segmentation methods to provide separation regions of interest.

- Know how to apply and adapt the techniques and methods in practical domains, linking the work done with the most current research topics.

- Knowing the efficient implementation of the major operators and techniques.

 

 

ASSESSMENT AND GRADING

The following aspects are considered: exercises and homework, and presentation in public (and associated report) of a research topic related to the course topics. Note: class attendance is expected.

 

Acciones de Documento
  • RSS Feed
  • Enviar esto
  • Imprimir esto
  • Marcadores (bookmarks)
Copyright 2009, Autores y colaboradores. Reconocer autoría/Citar obra. Arco, J. C. d. (2010, March 08). Non-Linear Processing and Image Analysis. Mathematical Morphology. Retrieved March 26, 2017, from OCW UPM - OpenCourseWare de la Universidad Politécnica de Madrid Web site: http://ocw.upm.es/ciencia-de-la-computacion-e-inteligencia-artificial/tratamiento-no-lineal-y-analisis-de-imagenes.-morfologia-matematica. Esta obra se publica bajo una licencia Licencia Creative Commons Licencia Creative Commons